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ABSTRACT 

Naturally reductive Riemannian 3-symmetric spaces have been shown to 
relate closely to the class of heady Kahler manifolds. Our purpose here is to 
introduce a similar study of 4-symmetric spaces by considering a particular 
F-struture which they all carry. This appears to be the natural analogue of a 
nearly Kahler structure. The main theorem provides a characterisation of all 
naturally reductive locally 4-symmetric spaces in terms of the associated 
F- structure. 

1. Introduction 

Riemannian k-symmetric spaces form a natural extension to the symmetric 
spaces ofE. Cartan. Basic properties and methods for the classification of these 
spaces can be found in [7], [ 12], [ 13] and [ 14]. More detailed accounts have 
been given in [4] and [5] for the cases k = 3 and k -- 4 respectively. Also a full 
classification for spaces of  dimension n ___< 5 can be found in [8]. All Rieman- 
nian k-symmetric spaces are Riemannian homogeneous so, by analogy with 
symmetric spaces, those which are naturally reductive should be of particular 
interest. As we show, there is a simple necessary and sufficient condition for 

this property to hold. 
Riemannian locally k- symmetric spaces can be defined by means of  particu- 

lar local isometrics or, more simply, by tensor conditions. When k = 2 these 
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reduce to the single condition VR -- 0. For many purposes it is sufficient to 
consider local properties, since these extend globally when the further con- 
ditions of completeness and simple connectivity are imposed. Moreover, the 
property of being naturally reductive extends readily to Riemannian locally k- 
symmetric spaces. 

On any Riemannian locally k-symmetric space (M, g) there exists a canoni- 
cal F- structure which becomes an almost complex structure when k is odd [ l 1 ]. 
In particular, when k = 3 and (M, g) is naturally reductive then F is a nearly 
Kahler structure. This raises the converse question of how to characterise 
(M, g) as a naturally reductive locally 3-symmetric space by means of its 
nearly Kahler structure. As shown by Gray in [3] and [4], just one further 
condition is necessary and this is a third-order one involving VR only. Thus, 
surprisingly perhaps, no algebraic ~ondition on R is required. 

Our purpose here is to consider the analogous problem for k = 4. In this case 
F does not reduce to an almost complex structure on (M, g) and each tangent 
space has a direct sum decomposition into two subspaces determined by F. In 
Section 2 we outline some basic properties of Riemannian k- symmetric spaces 
and, in particular, those which are naturally reductive. We then consider their 
local analogues which are our main concern. In Section 3 we use the first-order 
properties of a naturally reductive locally 4-symmetric space to define a (4, F)- 
manifold. It follows that a locally 4-symmetric space is naturally reductive if 
and only if it is a (4, F)- manifold. Then in Section 4 we consider higher-order 
conditions and obtain a characterisation of naturally reductive locally 4- 
symmetric spaces as a special class of (4, F)- manifolds. As before, these extra 
conditions are just on VR. The main results are given in Theorems 4.2, 4.3, 4.4 
and 4.5. 

One might conjecture that a 'useful' definition of a (k, F)- manifold would 
result via a study of naturally reductive locally k-symmetric spaces. From such 
a viewpoint nearly Kahler manifolds would be classified as (3, F)- manifolds. 
This more general question will be, considered in a forthcoming paper. 

For notational purposes we usually follow [6]. Any Riemannian manifold 
(M, g) is assumed to be connected, smooth and finite dimensional. In general, 
we write ~'~ for the algebra of smooth tensor fields with contravariant and 
covariant orders p and q respectively; in particular, we write ~ g  = ~rp and 
~r0 __ ~-p. Tensor fields A, B ~o~'I will often be considered as linear endomor- 
phisms and then composed in the usual way to give AB ~--~I. 

Finally, we remark that the results and proofs in this paper remain valid for 
pseudo-Riemannian manifolds. 
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2 .  Preliminaries 

We recall here some basic properties of Riemannian k-symmetric spaces. 
Let .(M, g) be a (smooth, connected) Riemannian manifold and let s = 
{ sx :x  ~ M }  be a family of isometries of (M, g) such that each x ~ M  is an 
isolated fixed point of the corresponding map sx. We call s~ a Riemannian 

symmetry  at x and say (M, g) has a regular s-structure if 

Sx o sy = ss, ty) ° sx for all x, y E M. 

If, in addition, there exists a positive integer k such that, for each x ~ M, k is 

the least positive integer for which s~ is the identity map on M, then we call 
(M, g) a (Riemannian) k-symmetric space and denote it by (M, g, s). 

Any tensor field on (M, g, s) is called s-in variant if it is invariant under each 
symmetry Sx, x E M .  In particular, the tensor field S E ~ ' I  defined by 

(2.1) S ~ X = S x . X  f o r e a c h x ~ M a n d X E M ~  

is smooth and s-invariant. We call S the symmetry  tensor field on M and note 
that I - S is non-singular at each point of M. Furthermore, we say a tensor 
field TE~ 'g  is S-invariant if, for all w~ . . . . .  wp ~ 1  and XI . . . .  , Xq E ~  ~, 

T(w~S . . . .  , w p S ,  X 1 . . . .  Xq) = T(w~, . . . , wp, SX~ . . . . .  SXq) 

where ( w S ) X  = w(SX)  for w E~ ' t  and X E ~  "l. Thus it can be seen that the 
tensor fields g, R, VR, VSand V2Sare S-invariant where V is the Riemannian 
connection on (M, g) and R the curvature tensor field. 

Because of the regular s-structure on (M, g, s) we may consider it as a 
reductive homogeneous space [12] with respect to a group of isometries 
preserving the tensor field S. We write the corresponding canonical connection 

[2] as V. Then 9 is invariant with respect to each symmetry sx and ~S  = 0. In 
fact, it is easily seen that these two properties characterise the canonical 
connection. Next, define D E ~'~ by 

(2.2) D x Y  = D(X ,  Y)  = V x Y  - 9 x Y  for all X, y ~ r m .  

Then D is invariant with respect to each sx and, in particular, D is S-invariant. 
It follows that D is given by 

(2.3) Dx Y = (V(l_s)- ,xS)S-1 y for all X, Y E~rl.  

Moreover, since 9g  = 0 we see from (2.2) that each Dx, considered as a 
derivation, satisfies 
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(2.4) Dxg = O. 

Now the homogeneous k- symmetric space (M, g, s) is naturally reducti ve with 
V as the natural (torsion free) connection if and only if V and 9 have the same 
geodesics [6]. From (2.2) this is equivalent to the condition 

(2.5) DxX = 0 for all X E 3  "~. 

Next, we consider local analogues. Thus, let (M, g) be a Riemannian 
manifold with a tensor field S~.~ 'I  such that I - S is non-singular and g is 
S- invariant. As before, we call S a symmetry tensor field and say S has order k if 
S k = I for some least positive integer k. Moreover, we say S is regular when the 
tensor fields VS and V 2S are S-invariant. Suppose we are given S of order k on 
(M, g). Then for each x E M  a local symmetry sx of order k is defined on a 

sufficiently small neighbourhood, of x by 

s~ = expx * S~ * exp,- ~. 

Clearly, Sx and sx are related as in (2.1). If there exists a family {sx: x EM}  of 
such maps for which each sx is a local isometry preserving S, then we say 
(M, g) together with S is a (Riemannian) locally k-symmetric space and denote 
it by (M, g, S). Clearly k-symmetric spaces are locally k-symmetric. We recall 

the following results from [2]. 

THEOREM 2.1. A Riemannian manifold (M, g) with symmetry tensor field 
S of order k is locally k-symmetric i f  and only i fS is regular and the tensorfields 
R and VR are S-invariant. Moreover, i f(M, g) is locally k-symmetric, com- 
plete and simply connected then it is k-symmetric. 

Suppose S is a regular symmetry tensor field on (M, g) and define D by (2.3). 

Then D and VD are S-invariant and we have 

(2.6) Dxg = 0 for each X ~  "~. 

Hence, from (2.2) we obtain a connection V which again we call the canonical 
connection. This can be shown to satisfy 

(2.7) Vg -- VS = VD -- 0. 

In particular, we say a locally k-symmetric space (M, g, S) is naturally 
reductive if D satisfies (2.5). Henceforth, our purpose will be to consider such 
spaces when k ffi 4.  
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3. First-order conditions 

Let (M, g, S) be a locally 4-symmetric space. Now I - S is non-singular so 

we have 

(3.1) S 3 + S 2 + S + I = (S + I ) (S  ~ + I)  = O. 

Define tensor fields F and P of  type (1,1) by 

F = ½(S + I) 2 (3.2) 

and 

(3.3) P = ½(S 2 + I) = F - S. 

We call F the  canonical F- structure on (M, g, S) (cf. [1] and [15]) noting that it 

satisfies 

(3.4) 

and 

(3.5) 

Moreover, 

and 

(3.6) 

LEMMA 3.1. 

F 3 + F f f i 0  

g ( F X ,  X) = 0 for all X ~ , ~  1. 

p - F  2 = I ,  

F S  = S F  = F 2, 

P F  = FP  = 0, 

P S  = S P  = - P 

g ( F X ,  PX)  = O. 

Suppose (M,  g,  S )  is a naturally reducti ve locally 4-symmetric 

space. Then the tensor fields F and  P defined by (3.2) and (3.3) satisfy 

(3.7) P ( V  x P ) X  = P ( V  x F ) X  = O. 

(3.8) F ( % x  F ) F Y  = 0 

for  all X ,  Y E ~  "~. 

PROOF. We first consider corresponding properties for the derivation Dx, 

where we use (2.5) and the S-invariance of D. We have for all X, Y E ~  -1 

PDFx(PY) = PS2DFx(PY) = -- PDrx(PY)  

80 

(3.9) PDFx(PY) = O. 
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Then 

(3.10) P ( D x P ) X  = P D x ( P X )  = P D ~ e - r S x ( P X )  = O. 

Next, we note that 

S D r x ( F 2 X )  = - Dr~x (FX)  = D r x ( F 2 X ) ,  

hence 

(3.11) 

Then 

which implies 

(3.12) 

Finally, 

DFx(F2X)  = O. 

P D x ( F X )  = P S 2 D x ( F X )  = - PDc2: ~ i ) x (F X )  

= - P D x ( F X )  

P ( D x F ) X  = O. 

F D F x ( F  2 Y )  = _ F S 2 D r x ( F  2 Y )  = _ F D r x ( F  2 Y )  

SO 

(3.13) F ( D e x F ) F Y  = O. 

Since V F  ---- VP = 0, the lemma follows immediately from (2.2), (3.10), (3.12) 
and (3.13). 

We now introduce the following definition. 

D~FINXTION. A (4, F)- manifold is a Riemannian manifold (M, g) together 
with a non-zero tensor field F E 3 r l ,  for which P = I + F ~ is non-zero and 
(3.4), (3.5), (3.7) and (3.8) are satisfied. 

Let (M, g) be a (4, F)-manifold with Riemannian connection V, and define 
S = F - P where P = F 2 + I.  Then, as a consequence of  (3.4), S has order 4 
and I - S is non-singular. Also, it follows using (3.5) that g is S-invariant and 

each tangent space Mx has an orthogonal direct sum decomposit ion induced by 
the projection maps - F 2 and P. Thus S is a symmetry tensor field of  order 4 

which we regard as the canonical symmetry tensor field on ( M ,  g) .  We note 
that F and P are S-invariant since F = ~(S + 1) 2. 

PROPOSITION 3.2. On a n y  ( 4 , F ) - m a n i f o l d  the  tensor  f i e l d  V S  is S-  

in  var ian t .  
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PROOF. Since S -- F - F 2 - I i t  is sufficient to show that VFis  S-invariant. 
We need to consider several cases arising from the above orthogonal de- 
composition. For these, we use (3.7), (3.8) and the algebraic relations between 
F,  P and S without further reference. Thus, the following properties hold for all 
X, Y, Z ~  "l. 

(i) P(V sx F ) S Y  = P(Vsx F2) Y 

= _ p ( V r F 2 ) S X  

(3.14) = P ( V v F ) X  

= - P ( V x F ) Y  

= S P ( V x F  ) Y. 

Next  we have 

(ii) 

Thus  

(3.15) 

Finally, 

(iii) 

(3.16) 

g( (V sx F)SP Y, FZ)  - -g (F(VsxP)Y ,  FZ)  

= - g((VsxP)Y, F2Z) 

= g(PY, (VsxF2)Z) 

= _ g(PY, (VzF2)SX) 

= g(PY, (VzF)X)  

= - g(eY, (VxF)Z) 

= g ( ( V x e ) Y  , FZ)  

-- g(F(V xF)PY,  FZ)  

= g(S(VxF)PY,  FZ). 

F(V sx F)SPY = SF(V x F)PY.  

SF(V ex F ) F Y - -  F2(V ex F ) F Y  

= F(VpxF2)Fy - F(VpxF)F2y 

= F(VexP)FY  + F(VspxF)SFY 

= F(VspxF)SFY. 
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By writing 

(V xF)Y  = P(V xF)Y  - F2(V xF)Py  + F2(VexF)F2y - F2(V ~xF)F2y, 

it follows from (3.8), (3.14), (3.15) and (3.16) that VF, hence VS, is S- 
invariant as required. 

Next we define D on a (4, F)- manifold by (2.3). Then, as an easy conse- 
quence of (3.7), (3.8) and the S-invariance of  VS, we have 

COROLLARY 3.3. On any (4, F)-manifold, D is S-invariant and DxX = 0 
for all X E ~ "l. 

From this result and Lemma 3.1 we obtain 

PROPOSn'ION 3.4. Let (M, g, S) be a locally 4-symmetric space. Then the 
following conditions are equiva[ent: 

(i) (M, g, S) is naturally reductive, 
(ii) (M, g, S) is a (4, F)-manifold with respect to its canonical F-structure. 

4. Higher-order conditions 

In this section we adopt the following notation. We defir~e V 2S by 

(V2S)(X, Y, Z)  = (V~yS)Z = Vx(VrS)Z  - (VvxrS)Z - (VrS)VxZ  

and define the covariant form of  the curvature tensor field R by 

R(X,, X2, X3, X4) = g(R (X3,)(4)?(2, Xl). 

Also, we extend the definition of  S-invariant tensor fields to include tensor 
polynomials with entries in ~'~. Thus let T E ~ ' r  and choose a partition of  
{1 . . . . .  r} into disjoint subsets B~, . . . .  Bl. Define a tensor polynomial 
p ( U , . . . ,  UI) on the /-fold product  ~ ' ~ X . . .  ×~ '~  by p(U~ . . . .  , Ui) = 
T(X~, . . . .  X,) where, for i = 1 . . . .  , r, X~ = U~ if i EB~. Then we say 

p(U~ . . . . .  Ut) is S-invariant if p ( S U I , . . . , S U I ) = p ( U ~ , . . . ,  U~) for all 
U~ . . . .  , Ui E ~'~. Finally, for convenience of notation, we write S 3 - I -- A. 

We now consider S-invariant tensor polynomials arising from R. 

LEMMA 4.1. On any (4, F)-manifold (M, g) the curvature tensor field 
satisfies 

(i) R((P + 1)X, FY,  X, Y) + R(FX, (P + I)Y, X, Y) is S-invariant, and 
(ii) R (PX, FY, FY, F 2 Y) = O. 
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PROOF. 

(4.1) 

SO 

(4.2) 

(i) First note that, since g is S-invariant, 

g((V xS)Z, s z )  = o 

g((V~x S)z,  SZ) + g((v xs )z ,  ( v , s ) z )  = O. 

Also, from (2.3) and Corollary 3.3, 

(V xS)aX --- 0 (4.3) 

$O 

(4.4) (V~xS)AX + (V xS)(Vy.4)X = O. 

Then from the relations SA = P + I --, F and A = - (P + I + F) we have 

2R ((P + I)X, FY, X, Y) + 2R (FX, (P + I)Y, X, Y) 

= R (SAX, SA Y, Y, X) - R (AX, A Y, Y, X) 

= g((V ~x S)A r - (V~,  S)a Y, SaX) 

which is S-invariant because of (4.2), (4.4) and the S-invariance of VS. 
(ii) From (3.7) we have 

g((VerS)FY, PX) = g((V prS)FY , PX) = 0 

and it follows, as above, that g((V~rer S)FY, PX) and g((V2r~r S)FY, PX) 
are S-invariant. Hence R(PX, F2y, F2y, FY) + R(PX, FY, F2y, FY) is S- 
invariant, which implies R(PX, FY, FY, F2y) -~- O. 

THEOREM 4.2. The curvature tensor field on any (4, F)-manifold (M, g) is 
S-in variant. 

PROOF. Let X, Y, Z, Wdenote arbitrary vector fields. It is clearly sufficient 
to prove S-invariance for the t'our cases 

(i) R(PX, PY, PZ, FW), (ii) R(PX, FY, PZ, FW), 
(iii) R(PX, FY, FZ, FW), (iv) R(FX, FY, FZ, FW), 

which we now do. 

(i) By writing X as PX and Y as PY + FY in (i) of Lemma 4.1 we have 
R(PX, PY, PX, FY) = 0. Hence R(PX, PY, PZ, FW) = O. 

(ii) Write X as PX + F2X and Y as PY + FY in (i) of Lemma 4.1. Then 
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2R(PX, F2Y, F2X, PY) + R(PX, PY, F2X, F2y) 
(4.5) 

- 2R(PX, FY, FX, PY) - R(PX, PY, FX, FY) = 0 

since the left-hand side of (4.5) is S-invariant. In particular, by writing FY as 
FX in (4.5) and linearising we obtain 

R(PX, F2Y, Fzw, PZ) + R(PX, F2W, F2y, PZ) 
(4.6) 

-- R(PX, FY, FW, PZ) - R(PX, FW, FY, PZ) = O. 

Then from (4.5) and the first Bianchi identity, 

3R(PX, F2y, F2W, PZ) - 3R(PX, FY, FW, PZ) 

- R(PX, F2W, F2y, PZ) + R(PX, FW, FY, PZ) -- O. 

This equation and (4.6) imply that R(PX, FY, FW, PZ) is S-invariant which 
proves (ii). 

(iii) By linearising (ii) of I .emma 4.1 we obtain 

R (PX, FX, FY, F ~ Y) + R (PX, FY, FX, F 2 Y) + R (PX, FY, FY, F2X) =- O. 

Now apply the first Bianchi identity to get 

2R (PX, FY, FX, F 2 Y) - R (PX, F 2 Y, FX, FY) 
(4.7) 

+ R (PX, FY, FY, F2X) --- O. 

Also, from (i) of l .emma 4.1, 

2R(PX, F2Y, FX, FY) + R(PX, FY, FX, F2y) + R(PX, FY, F2X, FY) 

is S-invariant. This, together with (4.7), shows that 

3R (PX, FY, FX, F 2 Y) + R (PX, F 2 Y, FX, FY) 

is S-invariant. The same is true with FY in place of Y, so it follows that 
R(PX, FY, FX, F2y) is S-invariant and hence zero. Then from (4.7), 
R (PX, FY, FY, F2X) = 0 and (iii) is an easy consequence. 

(iv) Since F(VrwS)FY = 0 we see that (V~z~wS)FY is S-invariant. Con- 
sequently, 

R(F2X, F2y, FZ, FW) - R(FX, FY, FZ, FW) 

= g((V2rw S)FY - (V}wrz S)FY, F2X) 

is S-invariant. Then 
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R(F2X, F2Y, F2Z, F2W) - R(FX, FY, FZ, FW) 

is S-invariant and hence zero, which proves (iv) and completes the proof of the 
theorem. 

THEOREM 4.3. The symmetry tensor field S on any (4, F)-manifold is 
regular. 

PROOF. Because of Proposition 3.2, it remains only to prove that V2S is 
S-invariant. Now since 

(V~S)Z  - (V~S)Z  = R(X, Y)SZ - SR(X, r ) z  

and R is S-invariant, it suffices to prove the S-invariance of V~x S. But from 
(4.4) we have 

(V2x S)A Y = - ((V 2 S)AX - (V 2 x S)AX) - (V xS)(V xA ) r 

- (V r S ) ( V x A ) X  - (VxS)(V rA)X, 

and the right-hand side of this equation is clearly S-invariant due to 
Proposition 3.2 and Theorem 4.2. This completes the proof. 

We now obtain third-order conditions which are necessary and sufficient for 
a Riemannian (4, F)- manifold to be locally 4-symmetric. 

THEOREM 4.4. Let (M, g) be any (4, F)-manifold and suppose, for all 
X, Y, Z, U, V ~,7 a'~, 

(i) (VvxR)(PY, PZ, PU, PV) = O, 
(ii) (V rx R )(FY, FZ, FU, FV) = O. 

Then (M, g) is a naturally reductive locally 4-symmetric space (M, g, S)for 
which F is the canonical F-structure. Con versely with respect to its canonical 
F-structure, any naturally reductive locally 4-symmetric space is a (4, F)- 
manifold for which (i) and (ii) are satisfied. 

PROOF. Suppose (M, g) is a (4, F)- manifold on which VR satisfies (i) and 
(ii). We prove that VR is S-invariant. Because of the algebraic identities 
satisfied by VR, we need consider only five cases. These are 

(iii) (VxR)(FY, FZ, FU, PV), (iv) (VxR)(FY, PZ, PU, PU), 
(v) (VvxR)(FY, FZ, FU, FV), (vi) (VrxR)(PY, PZ, PU, PV), 
(vii) (V x R )(FY, PZ, FU, PV), 

for all X, Y, Z, U, V. For (iii) we first note that, from the S-invariance of R, 
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R(FY, FZ, FU, PV) = 0, as can be seen by acting with S 2. Then (iii) follows 
using the S-invariance of R and VS. Similarly, we obtain (iv) by noting that 
R (FY, PZ, PU, PV) = O. Then (v) and (vi) are immediate consequences of(iii) 
and (iv) respectively and the second Bianchi identity. Finally, to prove (vii) we 
first note that g((VevS)FY, PZ) = 0, from which 

g((V~,evS)FY + (Vvj,)vS)FY + (VevS)(VvF)Y, PZ) 
(4.8) 

+ g((VevS)FY, (VvP)Z) = O. 

Also (3.7) implies g((VFrS)FY, PZ) = 0, hence 

g((V~er S)FY + (Vv,e)rS)FY + (VrrS)(VvF)Y, PZ) 
(4.9) 

+ g((VeyS)FY, (VvP)Z) = O. 

Then from (4.8) and (4.9) 

R(PZ, F2y, FY, PV) + R(PZ, FY, FY, PV) 

= g((V~ev S)FY - (V~,ve~, S)FY, PZ) 

(4.10) = - g((V(v,.,e)vS)FY + (VpvS)(VrrF)Y, PZ) 

- g((VevS)FY, (VFyP)Z) 

+ g((V(v,,e)r)FY + (VrzS)(VevF)Y, PZ) + g((Vr,,S)FY, (VevP)Z). 

Similarly, since g((VerS)F 2 Y, PZ) --- O, 

g((V2rr S)F2y + (VtvuF)rS)F2y + (V FrS)(V vF2) y, PZ) 
(4.11) 

+ g((VerS)F2Y, (VuP)Z)  -- 0. 

Hence, from (4.8) and (4.11) 

R(PZ, FY, FY, PV) - R(PZ, F2y, FY, PV) 

= -- g((V2rev S)F 2 Y - (V2VFr S)F 2 Y, PZ) 

= g((Vtv,,e)vS)F 2 Y 5: (VevS)(VerF)FY, PZ) 
(4.12) 

+ g((VevS)F 2 Y, (VprP)Z) - g((V(v,,~)rS)F 2 Y 

+ (VeyS)(VevF2)y, PZ) 

-- g((V~,S)F2y, (VevP)Z). 

Now, from (4.10) and (4.12) we see that R(PZ, FY, FY, PV) can be written 
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explicitly in terms of VS alone, thus no second-order terms involving V2S 
are required. It follows that (VxR)(PZ, FY, FY, PI~ is S-invariant for all 
X, Z, Y, V E ~  "1. Next, we prove (VxR)(FY, FZ, PZ, PV) is S-invariant. Thus 

(V rx R )(FY, FZ, PZ, PV) 

= - (VevR)(FY, FZ, FX, PZ) - (VezR)(FY, FZ, PV, FX) 

which is S-invariant by (iii). Similarly, it follows using (iv) that 
(VexR )(FY, FZ, PZ, PV) is S-invariant. Hence (V xR )(FY, FZ, PZ, PV) is S- 
invariant. From this property and the S-invariance of(VxR)(PZ, FY, FY, PV), 
as proved above, we readily obtain (vii). Thus we see from Corollary 3.3 and 
Theorems 2.1, 4.2 and 4.3 that (M,g) is a naturally reductive locally 
4-symmetric space for which F is canonical. 

The converse follows from Proposition 3.4 and by noting that (i) and (ii) are 
an immediate consequence of VR being S-invariant. 

We remark that in the definitions of a locally 4-symmetric space and a (4, F)- 
manifold the cases F = 0, P -- 0 are excluded. This avoids the occurrence of 
locally symmetric spaces (when F = 0) and Hermitian locally symmetric 
spaces (when P = 0) as shown by (3.8) and (i), (ii) of Theorem 4.4. 

Finally, from Theorem 2.1 and Theorem 4.4 we have the following imme- 
diate global result. 

THEOREM 4.5. Any complete, simply connected (4, F)-manifold (M, g) for 
which (i) and (ii) of Theorem 4.4 are satisfied is a naturally reductive 4- 
symmetric space (M, g, s)for which F is the canonical F-structure. 
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